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Structure focused 
neurodegeneration convolutional 
neural network for modelling 
and classification of Alzheimer’s 
disease
Simisola Odimayo 1, Chollette C. Olisah 1* & Khadija Mohammed 2

Alzheimer’s disease (AD), the predominant form of dementia, is a growing global challenge, 
emphasizing the urgent need for accurate and early diagnosis. Current clinical diagnoses rely on 
radiologist expert interpretation, which is prone to human error. Deep learning has thus far shown 
promise for early AD diagnosis. However, existing methods often overlook focal structural atrophy 
critical for enhanced understanding of the cerebral cortex neurodegeneration. This paper proposes a 
deep learning framework that includes a novel structure-focused neurodegeneration CNN architecture 
named SNeurodCNN and an image brightness enhancement preprocessor using gamma correction. 
The SNeurodCNN architecture takes as input the focal structural atrophy features resulting from 
segmentation of brain structures captured through magnetic resonance imaging (MRI). As a result, 
the architecture considers only necessary CNN components, which comprises of two downsampling 
convolutional blocks and two fully connected layers, for achieving the desired classification task, and 
utilises regularisation techniques to regularise learnable parameters. Leveraging mid-sagittal and 
para-sagittal brain image viewpoints from the Alzheimer’s disease neuroimaging initiative (ADNI) 
dataset, our framework demonstrated exceptional performance. The para-sagittal viewpoint achieved 
97.8% accuracy, 97.0% specificity, and 98.5% sensitivity, while the mid-sagittal viewpoint offered 
deeper insights with 98.1% accuracy, 97.2% specificity, and 99.0% sensitivity. Model analysis revealed 
the ability of SNeurodCNN to capture the structural dynamics of mild cognitive impairment (MCI) and 
AD in the frontal lobe, occipital lobe, cerebellum, temporal, and parietal lobe, suggesting its potential 
as a brain structural change digi-biomarker for early AD diagnosis. This work can be reproduced using 
code we made available on GitHub.
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Alzheimer’s disease (AD) is a specific type of dementia associated with severe neurological deficits that affect 
cognitive, visual, sensory, and motor functions in people living with the disease1. With AD, neurodegeneration, 
a progressive loss of structure or function of neurons, is inevitable, and there is currently no cure for reversing 
this process. However, clinical studies have shown that neurodegeneration progresses. With early diagnosis, 
treatment, and therapeutic interventions, the process can be slowed. At present, a definitive diagnosis of AD 
remains a complex task because tests for the presence of amyloid plaques and phosphorylated tau are the true 
determinants of AD and can mainly be performed posthumously2. Other clinical practices depend on a multitude 
of evaluations, including clinical assessments, medical history reviews, cognitive assessments, and neuroimaging, 
and many years of study are needed to reach a diagnostic decision3. Neuroimaging methods, such as positron 
emission tomography (PET) and MRI, provide information on the extent of structural changes in the brain rel-
evant for pathological alterations characteristic of the brain during degeneration4, particularly MRI. MRIs reveal 
several broad viewpoints, such as axial, coronal, and sagittal, with different levels of information for analysing 
brain neurodegeneration. Notably, the axial view revealed substantial atrophy of the cerebral cortex, leading to 
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shrinkage of the outer layer of the cerebrum. This atrophy is accompanied by ventricle enlargement, reduced 
brain volume, and diminished gray matter5. In contrast, the coronal view highlights ventricle enlargement and 
emphasizes significant temporal lobe and cortical atrophy. This is a window into the widespread loss of neurons 
throughout the brain, accompanied by sulcus widening and gyrus thinning6. The sagittal plane provides the most 
visible information for AD diagnosis7. Brain neurodegeneration is evident in the sagittal plane, particularly in 
the frontal lobe, cerebellum, occipital lobe, thalamus, and corpus callosum, where learning and memory, mental 
function, motor function, and sensory function8 can be significantly impacted.

Despite the diagnostic potential of MRI, its sole reliance on early AD diagnosis faces numerous limitations9. 
For example, AD may elude visual detection, especially when numerous samples of MCI and AD patients 
are analysed, thus necessitating the need for a comprehensive clinical evaluation methodology that is reliable. 
Additionally, the interpretability of MRI scans varies among radiologists and clinicians, which can introduce 
inconsistency in diagnosis. However, the emerging techniques in deep learning offer promise in diagnosing AD, 
particularly in timeliness, thereby paving the way for more effective AD management and intervention.

Over the past decade, deep learning algorithms, including both pretrained networks and tailored architec-
tures, have been successfully adopted for AD modelling. Pretrained networks have long-standing relevance in 
AD diagnostic research. Bae tailored a residual network-50 (ResNet50)10 for discriminating between MCI and 
AD patients and achieved an accuracy of 82.4%. The GoogLeNet, AlexNet, and ResNet-18 pretrained networks 
were exploited for classifying patients into cognitively normal, early mild cognitive impairment, mild cognitive 
impairment, and late mild cognitive impairment categories11. With accuracies of 96.39%, 94.08%, and 97.51% 
for GoogLeNet, AlexNet, and ResNet-18, respectively, ResNet-18 outperforms the other models in terms of 
performance. By integrating a 3D mobile inverted bottleneck convolution (MBConv) block in a 3D EfficientNet 
architecture12, accuracy, sensitivity, specificity, and AUC values of 86.67%, 75.00%, 90.91%, 97.16%, and 83.33%, 
respectively, were achieved for the sMCI and pMCI sets. In another work, the DenseNet-169 and ResNet-50 CNN 
architectures were exploited for early AD diagnosis13. DenseNet-169 exhibited superior accuracy, surpassing 
ResNet-50, with scores ranging between 97.7 and 88.7%. The ResNet-18 pretrained network was useful for AD 
classification14. With the use of the Mish activation function (MAF) for enhancing the model’s learning adapt-
ability and a weighted cross-entropy loss function to ensure equitable consideration of the AD, MCI, and CN 
classes, the network achieved 88.3% accuracy on the preprocessed ADNI dataset.

Tailored deep learning algorithms are now paving the way for AD diagnosis. Basaiaa et al.15 proposed a 3D 
CNN consisting of 2 convolutional blocks of 5 × 5 × 5 filter sizes and 10 blocks of 3 × 3 × 3 filter sizes. They utilized 
strides in place of max-pooling for downsampling. Their work achieved 74.8%, 75.1%, and 75.3% accuracy, sen-
sitivity, and specificity, respectively, on the ADNI stable (s-MCI) and MCI conversion (c-MCI) sets. The model 
achieved 85.9%, 83.6%, and 88.3% accuracy, sensitivity, and specificity, respectively, on the AD and s-MCI sets. 
Another study proposed a CNN for AD diagnosis and stratification16. This research not only facilitated fast 
and accurate AD diagnosis but also offered classification for normal, MCI, and AD patients. Additionally, we 
addressed the challenging task of stratifying MCI into very mild dementia (VMD), mild dementia (MD), and 
moderate dementia (MoD) stages, akin to prodromal AD. The shallow network16 achieved an overall testing 
accuracy of 99.68%, which surpassed that of pretrained networks such as DenseNet121, ResNet50, VGG 16, 
EfficientNetB7, and InceptionV3. Although they used the Open Access Series of Imaging Studies (OASIS) data-
set, it is important to note that their work shows the importance of custom-trained networks in AD diagnosis. 
A fine-tuned CNN classifier17 called AlzheimerNet is shown to be capable of classifying Alzheimer’s disease 
into five stages. With data preprocessing and augmentation, their method achieved 98.67% accuracy using the 
RMSProp optimizer. Considering the different patient groups used for diagnosing AD, 18 independent binary 
classifications were proposed: healthy control (HC) vs. AD, HC vs. pMCI, HC vs. sMCI, pMCI vs. AD, sMCI vs. 
AD, and sMCI vs. pMCI according to the deep belief network (DBN). The modifications to the DBN18 include 
dropout and zero-masking for overcoming overfitting, a preprocessing algorithm, a principal component analysis 
for dimensionality reduction, and a multitask feature selection approach. Using the ADNI dataset, accuracies 
ranging from 87.78 to 99.62% were observed. Hazarikar et al.19 replaced the downsampling layer in the tradi-
tional LeNet architecture with a fusion of min-pooling and max-pooling layers to retain both minimum-value 
and maximum-valued signals. Their model achieved an accuracy, precision, recall, and F1-score of 98%, 96%, 
97%, and 98%, respectively, on the ADNI dataset. In another work, a VGG-TSwinformer architecture20 that 
combines a VGG-16 convolutional neural network and a transformer network was proposed and validated on 
the ADNI sMCI and pMCI cohorts. The accuracy, sensitivity, specificity, and AUC were 77.2%, 79.97%, 71.59%, 
and 0.8153, respectively. Similarly, another work21 also found architecture useful for their methodology. They 
created a hybrid architecture by combining AlexNet with LeNet and varying the filter sizes from 1 × 1, 3 × 3, and 
5 × 5. Scores as high as 96%, 93%, 93%, and 96% for accuracy, precision, recall, and F1 score, respectively, were 
reported. Another notable architecture is the multiplane convolutional neural network (Mp-CNN) architecture, 
which simultaneously processes three planes, axial, coronal, and sagittal, of 3D MRI 22. The architecture of the 
Mp-CNN comprises 14 layers with rectified linear unit (ReLU) activation and softmax for multiclass classifica-
tion, and it outperforms traditional 2D CNNs in multiclass classification associated with AD, MCI, and NC. 
The Swinformer has also been explored23 as a transformer-based CNN architecture for AD classification. The 
Swinformer combines a CNN module for planar feature extraction and a transformer encoder module for 3D 
semantic connections. They argued that Swinformer can capture local features more accurately. The pipeline 
included data preprocessing and augmentation strategies such as random rotation and mirror reflection and 
recorded an accuracy of 88.3%.

While it is obvious that transfer learning with the use of state-of-the-art pretrained models is a promising 
technique for diagnosing AD, the tailored deep learning algorithm outperforms traditional methods in terms of 
performance and shows that it is better suited to preserving the underlying structure of the data for diagnosing 
AD. However, of these works, none have captured the structural dynamics of neurodegeneration in the brain in 
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individuals with MCI or AD, which leaves room for additional work to be done. Further, the transfer-learning-
based CNN architectures will fall short of their state-of-the-art performance expectations because the pre-trained 
weights are drawn from features unrelated to the focal structural atrophy of cerebral cortex neurodegenration. 
And since the other tailored-CNN architectures were not designed with considerations to the focal structural 
atrophy of the cerebral cortex neurodegeneration, their performance will be comparable to the pre-trained 
models. Therefore, this paper seeks to bridge this research gap by proposing SNeurodCNN. Unlike existing deep 
learning architectures, the SNeurodCNN architecture takes as input the focal structural atrophy features resulting 
from the segmentation of the structures of the cerebral cortex of the brain captured through magnetic resonance 
imaging (MRI). This is the first time the focal structural atrophy feature is investigated for its relevance in AD 
diagnosis. Following are the contributions of this paper to AD classification research.

•	 We propose a framework that integrates a preprocessor comprising of the novel SNeurodCNN architecture 
for modelling the structural neurodegeneration of the brain’s cerebral cortex and for the task of discriminat-
ing between MCI and AD. The architecture considers only necessary CNN components, which comprise two 
downsampling convolutional blocks and two fully connected layers, and utilises regularisation techniques to 
regularise learnable parameters to achieve state-of-the-art performance in AD classification. We show that 
SNeurodCNN is sufficient and better at learning the structural changes of the cerebral cortex resulting from 
brain neurodegeneration can be achieved with pre-trained models. The SNeurodCNN performance in the 
deep learning framework is further enhanced through the expansion of pixel intensity brightness using the 
Gamma correction technique.

•	 By leveraging the mid-sagittal and para-sagittal brain image viewpoints of the Alzheimer’s disease neuroimag-
ing initiative (ADNI) dataset, we investigate whether the varying viewpoints of the two planes of the sagittal 
axis, midsagittal and parasagittal, provide differing SNeurodCNN insights into structural neurodegeneration.

•	 We investigate SNeurodCNN sensitives to brain neurodegeneration for perceiving important digital biomark-
ers (digi-biomarkers) in order to identify facets of the brain where focal structural neurodegeneration of the 
cerebral cortex is prevalent.

Results
This section presents the results and findings of this paper. We begin by outlining the findings of SNeurodCNN 
and then progress to its analysis using Grad-CAM to identify features strongly indicative of the model’s sensitivi-
ties to brain neurodegeneration.

Evaluation of the structure‑focused ADNI dataset
Experiments on the structure-focused ADNI data version of the brain are relevant for understanding the struc-
tural changes that are contributors to brain neurodegeneration. The performance of the SNeurodCNN was 
evaluated on the midsagittal and parasagittal planes of the sagittal axis of the brain. The parasagittal view of the 
sagittal plane is the version taken from the off-centre plane, while the midsagittal view is the version taken at 
exactly the centre of the plane. The use of both planes is to investigate whether the model is impacted differently 
by neurodegeneration, as it pertains to the parasagittal region, which exposes regions of motor control, sensation, 
and perception, and the midsagittal region, which exposes regions that are responsible for visuospatial integra-
tion, memory, and self-awareness. The results of this experiment are presented in Table 1 and Fig. 1a and show 
that SNeurodCNN performed equally well with the varying viewpoints of the two planes of the sagittal axis, 
midsagittal and parasagittal, though the mid-sagittal plane provided better insight into brain neurodegeneration 
than the para-sagittal plane. Figure 1b illustrates the significance of enhancing pixel brightness. A performance 
increase of 2.4% is achieved with SNeurodCNN with Gamma correction compared to without correction.

For a detailed view of performance during training, we present the training and validation loss and accuracy 
generated during SNeurodCNN model development to better judge the model’s generalization capability on the 
unseen set. The results can be observed in Fig. 2. The training and validation loss and accuracy performance of 
SNeurodCNN with training sets from the midsagittal and parasagittal viewpoints. The loss curves generated 
in Fig. 2a,b demonstrate an exceptional trend in the training progress for both the parasagittal and midsagittal 
regions of the brain. As the number of epochs increases, there is a smooth and consistent descent in the loss 
curves, indicating effective model training. The convergence of training and validation losses to stable values, 
with a plateau at higher loss levels, signifies successful learning without succumbing to overfitting. Additionally, 

Table 1.   Performance evaluation of SNeurodCNN classification model in the midsagittal and parasagittal 
planes.

Metric Midsagittal plane (%) Parasagittal plane (%)

Accuracy 98.1 97.8

Precision 97.2 97.2

Sensitivity 99.0 98.5

Specificity 97.2 97.0

F1-score 98.1 97.8

AUC​ 98.1 97.8



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:15270  | https://doi.org/10.1038/s41598-024-60611-8

www.nature.com/scientificreports/

the parallel curves of both validation and training further attest that SNeurodCNN is learning from the training 
data but also demonstrates a robust ability to generalize to previously unseen data and simultaneously identify 
intricate patterns in the data while avoiding the pitfalls of overfitting.

Further, akin to the loss curves generated by the model, the accuracy curves depicted in Fig. 2 not only dem-
onstrate the model’s adeptness in making predictions for both datasets but also showcase its adaptability to the 
training data, indicating a continuous enhancement in predictive accuracy. As the epochs increase, the upward 
trajectory of the axis curve for both experiments corresponds to the decrease in loss. Although peak accuracy 
is reached relatively early on for both the midsagittal and parasagittal datasets, this does not compromise the 
SNeurodCNN performance as the close alignment between training and validation indicates good generaliza-
tion without overfitting.

As shown in Table 1 and Fig. 1, the accuracy, precision, recall, specificity, F1 score, and AUC of the SNeu-
rodCNN are outstanding. This is an indication that the model is capable of modelling the structural neurogen-
erative impacts of MCI and AD occurring at both parts of the sagittal plane—the midsagittal and parasagittal 
planes. While the accuracies recorded are high, which shows the model’s ability to distinguish between instances 
of AD and instances of MCI, the midsagittal accuracy increased by 0.3%. Given that the structure-focused ADNI 
is used, the performance conforms with the medical statement “midsagittal cerebral morphology provides a 
homologous geometrical reference for brain shape and cortical vs. subcortical spatial relationships” 24. In medical 
diagnosis, a high recall is preferred—the higher the value is, the greater the confidence we have in the model’s 
ability to minimize false positives, that is, diagnosing AD when in fact it is MCI and vice versa. Furthermore, 
the high F1-scores for both models reflect well-balanced performance in terms of precision and recall, ensuring 
a lower rate of both false-negative and false-positive predictions.

The ROC curves in Fig. 3 ilustrate the discrimination of the classification model on the respective dataset 
while showcasing the model’s excellent trade-off between sensitivity and specificity with a steep ascent and high 
AUC scores. These high AUC values of 0.978 (97.8%) and 0.981 (98.1%) further demonstrate the model’s superior 
predictive accuracy in identifying AD and differentiating between MCI patients.

As an additional measure of our model’s performance, we utilized the AUC metric, which is a metric that 
provides an unbiased view of a model’s performance amidst class imbalances aside from the F1 score since the 
data presented are 180:105 in proportion for AD patients and MCI patients. Scores of 98.1% and 97.8% were 

Figure 1.   Classification performance of SNeurodCNN model. The results combine performances at the 
midsagittal and parasagittal planes. Performance improvement with Gamma correction using the mid-sagittal 
plane.
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observed for the midsagittal and parasagittal sides, respectively, which underscores the models’ discriminatory 
capability in diagnosing AD.

SNeurodCNN sensitivity to brain neurodegeneration
To understand the sensitivity of SNeurodCNN to brain neurodegeneration, the same slices from the MCI and 
AD categories for the midsagittal and parasagittal planes were sampled. Then, with Grad-CAM, the activation 
maps of the last convolutional layer of SNeurodCNN are visualized to better understand the network’s sensitiv-
ity to brain degeneration. The Grad-CAM output is analysed using a heatmap; the brighter the yellow, the more 

Figure 2.   Plot of the training and validation loss and accuracy curves generated during the learning process. 
Graphs (a,c) depict the graphs achieved by using parasagittal region-focused images while (b,d) depict the 
graphs achieved by the midsagittal region.
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significant the region is, and the more prominent the region is where brain neurodegeneration is. The closer to 
purple it is, the less significant the difference is. These regions can be visualised in Fig. 4, with more examples 
for the midsagittal in Fig. 5 and parasagittal in Fig. 6.

As can be observed from the MCI (sMCI and pMCI) and AD slices in Fig. 5, the frontal lobe, occipital lobe, 
and cerebellum are the regions highlighted as being highly significant, with the frontal lobe being the most 
prominent while the cerebellum the least prominent. Therefore, these regions reveal SNeurodCNN sensitivity to 
brain neurodegeneration in relation to AD. The findings made with the midsagittal plane are consistent with those 
made with the parasagittal plane and can be observed in Fig. 6, although the parasagittal plane shows additional 
prominent regions about the locations of the temporal and parietal lobe. Since we used the structure-focused 
ADNI, it is only expected that the highlights relate to changes in structure caused by shrinkage of the cerebral 
cortex, known as cerebral atrophy. An obvious interpretation of these observations is that the SNeurodCNN can 
sense a significant difference in the structural characteristics of the frontal lobe, occipital lobe, and cerebellum 
and possibly the parietal regions in individuals with MCI (sMCI and pMCI) and AD.

Figure 3.   Plot of the receiver operating characteristic for parasagittal dataset (a) and Midsagittal dataset (b).

Figure 4.   Regions of brain neurodegeneration. (a) Midsagittal brain internal regions (Source: ‘Internal 
Brain Regions’ by Casey Henley, licensed under CC BY-NC-SA 4.0 International License, (b) highlights of 
SNeurodCNN neurodegeneration sensitivity in the midsagittal (up) and parasagittal (down).
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The succeeding discussions provide insights into the clinical relevance and functions of the frontal lobe, 
occipital lobe, cerebellum, temporal, and parietal lobe to better understand the roles they play in brain neurode-
generation in relation to AD. The frontal lobe, occipital lobe, and cerebellum are observed from the mid-sagittal 
viewpoint, while the temporal and parietal lobe are observed from the parasagittal viewpoint. These regions were 
well perceived by the SNeurodCNN as the digi-biomarkers for AD diagnosis and the intriguing thing is that the 
discovery corroborates with clinical studies.

•	 The frontal lobe is mainly responsible for motor action and the temporal integration of behavior25. The frontal 
lobes of patients with MCI show cortical atrophy26 and severe cortical volume deficit in AD patients.

•	 The occipital lobe27 is the region associated with visual processing for depth perception, color determination, 
object and face recognition, and is also responsible for memory formation. Early progressive MCI 28 manifests 
as structural change in the occipital lobe.

•	 The cerebellum is responsible for regulating motor movement and controlling balance29. Though it is not 
generally acknowledged, some degree of functional connectivity disruption can occur in the cerebellum of 
MCI and AD patients30. The sensitivity analysis with the proposed SNeurodCNN confirms this discovery 
because MCI and AD are observed to show a subtle structural impact on the cerebellum as shown in Fig. 4.

•	 The parietal region is responsible for body sensory perception. This region has not been confirmed in any 
of the DL-based studies, but a clinical study31 shows that the volume atrophy of grey matter of the brain can 
indicate a difference between MRI of MCI patients from AD patients.

•	 The temporal lobe is responsible for memory loss. Memory loss, to a considerable extent, affects MCI and 
AD patients, with the former being less pronounced than the latter32,33.

Figure 5.   Visualization of regions of interest on the midsagittal plane identified by the CNN model in AD (a), 
pMCI (b) and sMCI patients (c) subjects.
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Comparison with the state‑of‑the‑art methods
We first compare results generated with this paper’s focal structural atrophy ADNI data using pre-trained 
ResNet50 and DenseNet169 models which were shown in the reviewed literature to achieve better performance 
compared to other pre-trained models. As can be observed in Table 2 and Fig. 7, the SNeurodCNN achieves a 
32.6% and 16.5 increase in accuracy compared to ResNet50 and DenseNet169 pre-trained models, respectively. 

Figure 6.   Visualization of regions of interest on the parasagittal plane identified by the CNN model in AD 
patients (a), pMCI patients (b), and sMCI patients (c) subjects.

Table 2.   Comparison of the SNeurodCNN model with pre-trained models.

Metric

Model

SNeurodCNN ResNet50 DenseNet169

Accuracy 98.1 65.5 81.6

Precision 97.2 62.1 82.4

Sensitivity 99.0 75.8 79.2

Specificity 97.2 55.6 83.7

F1-Score 98.1 68.3 80.8

AUC​ 98.1 65.7 81.5
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This performance shows that SNeurodCNN better models the structural brain neurodegeneration because it is 
designed to consider only the convolutional blocks needed to encode the focal structural atrophy. Invariably, the 
structure of SNeurodCNN helped it to overcomes overfitting challenges compared to the deeper models. How-
ever, we are not affirming that the performance of the pre-trained networks is a lack of robustness but might be 
attributed to how less specialized they are at solving structural neurodegeneration problem. Further, we compare 
the reported accuracies of models from existing literature, the tailored and pre-trained architectures, where the 
focus is on AD and MCI classification with the ADNI dataset. Though these are in-direct comparisons as they 
were lifted as it is from the literature, the dataset and task of discriminating between MCI and AD make them 
relevant. The tailored architecture models, Basaiaa et al.15 and the DBN model18 offer general approaches for 
AD and MCI classification and achieved accuracies of 88.3% and 99.62%, respectively. The Mp-CNN model22 
utilizes multi-plane processing for MCI and AD classification and achieves 93% accuracy. On the other hand, 
the accuracies of the pre-trained models as reported in Table 3 confirm they are less specialized to solving brain 
neurodegeneration problems. The combination of DenseNet-169 and ResNet-50 CNN models16 achieved 83.82% 
accuracy on MCI and AD classification. The hybrid LeNet-AlexNet Model21 performed better than the hybrid 
of DenseNet and ResNet, it is short of the best-performing tailored architecture model. While each model has 
distinctive strengths for diagnosing AD and MCI, SNeurodCNN stands out for its specific focus on the regions 
where structural neurodegeneration occurs, making it a significant tool in the field.

Figure 7.   Visualising the performance of SNeurodCNN in comparison to the pre-trained models.

Table 3.   Comparison of the SNeurodCNN model with AD diagnosis state-of-the-art models in the literature.

S/N Model Year Performance metric Architecture Diagnostic approach Digi-biomarker

1 Basaia et al.’s 3D CNN model15 2019 74.8–88.3% accuracy
2 blocks of 5 × 5 × 5 and 10 
blocks of 3 × 3 × 3 filters, use 
strides for downsampling

AD and MCI diagnosis –

2 Deep belief network (DBN) 
model18 2023 87.78–99.62% accuracy Dropout and zero-masking, 

multitask feature selection
Classification tasks for AD 
and MCI –

3 DenseNet-169 and ResNet-50 
CNN models16 2023

DenseNet-169: 83.82% 
(testing); ResNet-50: Lower 
performance

Deep architectures with 
advanced feature learning Early AD diagnosis –

4 LeNet and AlexNet21 2023 96% accuracy
Combines both models and 
applies varying filter sizes from 
1 × 1, 3 × 3, and 5 × 5

AD and MCI classification –

5 Multiplane Convolutional Neu-
ral Network (Mp-CNN)22 2022 93% accuracy

14-layer architecture process-
ing axial, coronal, and sagittal 
planes of 3D MRI

Advanced multiplane image 
processing –

6 The proposed 2024
SNeurodCNN
98.1% accuracy
97.8% accuracy

Sagittal planes; CNN architec-
ture: 2D Conv, 3 × 3 filter of 
varying depth, Maxpool, Dense 
layers, Dropout

Classification tasks for AD 
and MCI

Captures structural brain 
neurodegeneration about the 
frontal lobe, occipital lobe, 
cerebellum, temporal, and 
parietal lobe
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Discussion
We delve into the discussion to elaborate on the implications of the results of this study. Neurologists traditionally 
use neuroimaging methods, such as MRI, to assess MCI and AD neurodegeneration, but this paper presents a 
dimension that automates diagnosis toward classifying the disease stages but can help in identifying the regions 
susceptible to neurodegeneration. This finding substantiates the relevance of the proposed SNeurodCNN model 
in the early diagnosis of AD. The evaluation of neurodegeneration using the midsagittal and parasagittal planes of 
the brain results in remarkable performance. These findings surpass those of previous studies7,10. SNeurodCNN 
has shown promise in capturing neurodegenerative features from MR images. As observed with Grad-CAM, 
structural changes were prominent in the frontal lobe, occipital lobe, and cerebellum on the midsagittal MR 
images. Frontal lobe dysfunction has been implicated in various neurodegenerative conditions, including AD 
and MCI34. The parasagittal view showed that an additional structural change is possible in the parietal lobe, 
which is not obvious in the midsagittal slices. The SNeurodCNN model region is most sensitive to the frontal 
lobe, occipital lobe, cerebellum, and parietal lobe, which is consistent with the findings of clinical studies25–31 
and, in some cases, consistent with regions identified in one of the DL-based studies7; however, our study further 
confirms the significance of cerebral atrophy on brain structure. Therefore, these findings show that our proposed 
SNeurodCNN can significantly contribute to AD diagnosis and prognosis. This necessitates the integration of 
deep learning into healthcare practices to provide early cues about AD that might be present in MCI patients, 
minimizing the occurrence of false positives and false negatives that can mitigate misdiagnosis.

Further, the structural changes that our proposed SNeurodCNN highlights set a record as a potential brain 
structural change digi-biomarker for the early diagnosis of AD. The benefits of digi-biomarkers are numerous. (1) 
These findings can help clinicians develop targeted and personalized treatment plans and interventions through 
personalized analysis of disease states. These findings could lead to valuable targets for therapeutic interventions 
and monitoring and the assessment of novel treatments accordingly.

Materials and methods
This section elucidates the dataset employed in this study and outlines the methodologies encompassing the 
data preprocessing pipeline and the design of the deep convolutional neural network architecture as illustrated 
in Fig. 8.

Data
The ADNI AD benchmark dataset, commonly used for AD analysis, is pertinent to this study. The dataset 
contains brain images of individuals aged 55 to 90 years who were enrolled from 57 sites across the U.S. and 
Canada, following informed consent. In all, the ADNI comprises 368 participants, categorized into 180 AD 
patients (82 females, 98 males; age ± SD = 75.28 ± 7.57 years) and 105 stable sMCI patients (41 females, 64 
males; age ± SD = 74.69 ± 7.41 years). The average mini-mental state examination (MMSE) scores were 23 for 
AD patients, 28 for sMCI patients, and 27 for pMCI patients. All subjects had a T1-weighted baseline from the 
ADNI1/Go/2 cohort. The sMCI group consisted of individuals who were diagnosed with MCI at baseline and 
remained so for at least 2 years. A summary of the demographics of the ADNI participants is provided in Table 4 
and the mental examination score of the participants in Fig. 9.

We particularly explored skull-free patient version (https://​doi.​org/​10.​12751/g-​node.​aa605a). This version 
utilized the ADNI dataset preprocessed to correct imaging distortion through grad warping via gradient inho-
mogeneity correction, intensity correction, and scaling to address gradient drift. The results are further processed 
using multi-atlas label propagation with expectation maximization (MALPEM) to segment, on local scales, the 
cross-sectional structural volume changes in the brain, which constitute the structure-focused ADNI dataset. It 
should be noted that each slice of the structure-focused ADNI dataset is characterized by the region of the gray 
matter that forms the anatomical structures of the MRI brain images and not the gray matter itself.

Figure 8.   Overview of the proposed deep learning framework for AD diagnosis.

https://doi.org/10.12751/g-node.aa605a
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Preprocessing
Considering that structural changes in the brain and AD pathology are more prominent in the sagittal plane, 
their efficacy in AD classification has long been established7,12. This study explored two sagittal plane views, 
the midsagittal and parasagittal viewpoints, from the ADNI volumetric data in the sagittal plane. From the 3D 
structured focused ADNI dataset comprising 368 subjects with 155 slices, only slices showing full brain parts 
were retained; as such, the number of slices varied from sample to sample. In this study, we considered a different 
approach, which is an unusual practice in the literature where the disease case of a sample is described by all/
fraction of their slices. The slices from the sMCI and pMCI patients were combined and referred to as the MCI 
set, while the slices from the AD samples were likewise combined into an AD set. We consider AD diagnosis to 
be a sample-independent task; therefore, it is only logical to teach the deep learning algorithm to capture the 
factors influencing the two categories, MCI and AD, to better understand the disparity that exists between them. 
In all, a total of 4228 midsagittal AD and MCI sets were retained, each consisting of 2160 and 2068 participants, 
respectively. The para-sagittal AD and MCI sets included 2700 and 2820 participants, respectively, for a total of 
5520 data points.

Despite the intensity correction on the original ADNI dataset, the structure-focused ADNI dataset shows 
that images are captured under poor illumination conditions. Therefore, we propose to expand the brightness 
of pixel intensities of the structure-focused ADNI data using the Gamma correction technique. We found the 
Gamma correction technique to be useful for this task because the nonlinearity property of the Gamma func-
tion is better suited for expanding the brightness of pixel intensities of poorly illuminated images without losing 
information useful for further processing35. The gamma correction technique is formed from the inverse of 
the gamma function. A Gamma value of 0.2 is the value that achieved optimal performance in the proposed 
framework. The AD and MCI samples were subsequently split into training and testing sets at a ratio of 80:20. 
The testing set is further split into halves to accommodate the set for validation.

The SNeurodCNN architecture
As previously stated, each structure-focused ADNI MRI slice is characterized by the formation of gray matter, 
which forms the anatomical structures of the MR brain images. This structural formation, as opposed to gray 
matter features, is used to capture focal structural changes associated with neurodegeneration in the cerebral 
cortex as opposed to focal fine-grain changes within anatomical structures. For this reason, the SNeurodCNN 
architecture is designed to be a deep convolutional neural network for modelling the structural neurodegenera-
tion of the brain and discriminating between MCI and AD.

The SNeurodCNN architecture as illustrated in Fig. 10. It consists of downsampling convolutional blocks and 
fully connected layers and utilizes regularization techniques. The usual hierarchical depth of the convolutional 
layers in the design of a CNN architecture are necessitated to fully capture the diverse low-level and high-level 

Table 4.   Demographics and clinical characteristics of the study population in the ADNI dataset.

Group Subject Age

Gender

M F

AD 180 75.28 ± 7.57 98 82

sMCI 105 74.69 ± 7.41 64 41

pMCI 83 73.82 ± 6.65 49 34

29%

36%

35% AD
sMCI
pMCI

Figure 9.   A chart of the average mini-mental state examination scores of participants across the disease states. 
The sMCI and pMCI have similar mini-mental scores which are significantly different from AD.
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details in an image. Conventionally, the top of this hierarchy captures local features such as edges, corners, tex-
ture, and further down the hierarchy are global features like blob formation. Since the input to SNeurodCNN 
is the structure focused skull-free ADNI data of less dense spatial information compared to the full skull-free 
grey matter ADNI data, deeper convolutional blocks are likely to lead to model overfitting because the local and 
global features already take forms without much depth. As such, only two downsampling convolutional blocks 
are necessary for extracting feature maps from the structural focused ADNI data which are representative of the 
focal structural atrophy of the brain cerebral cortex. The first downsampling convolutional block contains a 2D 
convolutional layer of 3 ×3 and 32 filter dimension and depth, respectively, with Relu activation function and 
L2 norm regularization with a weight decay rate of 0.01, and 2 ×2 max-pooling layer. The second convolutional 
block contains two 2D convolutional layers of 3 ×3 and 64 filter dimension and depth, respectively, with each 
layer having a Relu activation function and L2 norm regularization with a weight decay rate of 0.01, and a 2 ×2 
max-pooling layer. Then, the fully connected (FC) layers map the output of the downsampling convolutional 
blocks to a 1D feature vector of neurons corresponding to the most significant features. At the FC layers, is a 
dense network (of 500 hidden neurons) incorporating Relu activation function and L2 norm regularization with 
a weight decay rate of 0.01, a dropout layer with 50% drop rate, and the finally, a softmax classification layer.

Experimental settings
The network’s hyperparameters are chosen in ways that best optimize the network’s learning capability. For the 
hyperparameters, the Adam optimizer with a learning rate fixed at 0.0001 is used. The other variables are epochs 
and batch sizes, which are 100 and 32, respectively. We adopted early stopping, a regularizer that prevents overfit-
ting by immediately halting training when the performance of the network does not improve after several epochs. 
The parameters of the early stopping agent used were patience set to 5 and restore_best_weights set to the true 
Boolean value. During training, the model learns through a method called backpropagation36, which updates the 
weight of the network toward minimizing the gradient error. Considering the impact of hardware resources on 
model performance, the hardware configuration of the system used for training the network is reported as fol-
lows: A Keras library running on a Python-TensorFlow environment with a Google Collab GPU, Tesla K80 (T4).

To evaluate the performance of the SNeurodCNN model, the following metrics were identified and found to 
be consistent with the metrics used in the literature for diagnosing AD. The variables used were the accuracy, 
precision, recall, specificity, F1-score, and area under the receiver operating characteristic (ROC) curve (AUC), 
which provide a comprehensive assessment of the model’s performance. Their brief descriptions are as follows.

1.	 Accuracy This metric measures the proportion of correct predictions over the total number of predictions, 
as expressed in (1).

where TP = true positive, TN = true negative, FP = false positive and FN = false negative.
2.	 Precision the proportion of true positives out of all the instances predicted as positive. In this case, precision 

measures the number of correctly classified AD cases out of all instances classified as ADs and is mathemati-
cally expressed as follows:

3.	 Recall also known as sensitivity, this measures the proportion of correctly identified positive instances out 
of all the actual positive instances. In this case, the recall measures the proportion of correctly classified AD 
cases out of all actual AD cases. It is given as:

(1)Accuracy =
TP + TN

TP + TN + FP + FN
,

(2)Precision =
TP

TP + FP
.

Figure 10.   Architecture of the SNeurodCNN model.
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4.	 Specificity This metric quantifies the model’s ability to make true negative predictions out of all the correctly 
identified negative instances. With regard to the classification model, specificity will measure the proportion 
of correctly classified MCI cases out of all actual MCI cases. It is mathematically given as follows:

5.	 F1-score The F1-score combines precision and recall into a single metric, providing a balanced measure of 
the model’s performance. It considers both false positives and false negatives, making it valuable for overall 
performance assessment.

6.	 AUROC The AUROC evaluates the model’s performance across different classification thresholds, considering 
the trade-off between sensitivity and specificity. This approach provides insights into classifier discrimination 
ability and can be particularly useful for imbalanced datasets.

Limitations
The growing increase in AD cases underscores the pressing necessity of advancing research in deep learning. Our 
proposed SNeurodCNN achieves remarkable classification accuracies of 98.1% and 97.8% in both the midline 
and posterior sagittal planes, respectively. This level of performance surpasses that of many existing studies, 
highlighting the potential of deep learning, particularly our proposed model, in transforming the landscape of 
neurodegenerative disease diagnosis. The model’s sensitivities to neurodegeneration in the brain structure not 
only substantiated our model’s efficacy but also deepened our comprehension of the intricate nature of neurode-
generative diseases in relation to MCI and AD, thereby opening doors for a better understanding of the disease.

While our proposed SNeurodCNN model significantly contributes to AD diagnostic research, its findings 
are constrained by several limitations. The trainable parameters are large and computationally expensive, espe-
cially with respect to reliability and usefulness in real-time clinical diagnosis. Therefore, efforts to achieve high 
performance while minimizing the computational cost will be explored. Additionally, this paper is directed 
toward the structural function of the brain analysis, which led to the use of structure-focused ADNIs. However, 
it will be interesting to understand how the SNeurodCNN model performs on focal fine-grain features available 
with skull-free ADNIs. This approach enables us to better analyse which of the features, focal fine-grain or focal 
structure, are representative of the characteristics of neurodegeneration in the brain in a way that makes early 
diagnosis of AD feasible and reliable in clinical analysis. We expect that the outcome of the aforementioned study 
will lead to an understanding of the underlying neurobiological mechanisms involved in MCI and AD, which 
will help in studying AD progression.

Conclusion
In this paper, we propose a structure-focused neurodegeneration convolutional neural network (CNN) archi-
tecture called the SNeurodCNN, which was integrated into a deep learning framework along with preprocessing 
techniques for image enhancement and data preparation. The proposed framework leveraged the midsagittal and 
parasagittal brain image viewpoints of the structure-focused ADNI dataset. Through experiments, the proposed 
framework achieved 97.8% accuracy, with 97.0% specificity and 98.5% sensitivity on the parasagittal planes. 
On the midsagittal plane, accuracy, specificity, and sensitivity of 98.1%, 97.2%, and 99.0%, respectively, were 
achieved. We further showed that the midsagittal lobe highlights the frontal lobe, occipital lobe, and cerebellum, 
while the parasagittal lobe extends to the parietal lobe as a region of the brain where structural dynamics are 
prominent due to MCI and AD. We believe this discovery is useful for identifying digi-biomarkers for the early 
diagnosis of AD. In future work, efforts will be made to minimize the computational cost of the proposed model 
while achieving the same level of neurodegeneration modelling. Additionally, it will be interesting to apply the 
proposed model to focal fine-grained feature learning. This approach enables us to better analyse which of the 
features, focal fine-grain or focal structure, are representative of the characteristics of neurodegeneration in the 
brain in a way that makes early diagnosis of AD feasible and reliable in clinical analysis.

Data availability
The datasets analysed during the current study are available at the following link: https://​doi.​org/​10.​12751/g-​
node.​aa605a/.

Code availability
The source code is available on https://​github.​com/​Simi9​12/​Deep-​convo​lutio​nal-​neural-​netwo​rk-​class​ifier-​for-​
Alzhe​imer-s-​Disea​se-1.
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(3)Recall =
TP

TP + FN
.

(4)Specificity =
TN

TN + FP
.

(5)F1 = 2×
Precision× Recall

Precision+ Recall
.
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